Supervised Pattern Classification Using Optimum-Path Forest

نویسندگان

  • João Paulo Papa
  • Alexandre Xavier Falcão
چکیده

We present a graph-based framework for pattern recognition, called Optimum-Path Forest (OPF), and describe one of its classifiers developed for the supervised learning case. This classifier does not require parameters and can handle some overlapping among multiple classes with arbitrary shapes. The method reduces the pattern recognition problem into the computation of an optimum-path forest in a graph derived from the data samples. The advantages in efficiency and/or accuracy over Artificial Neural Networks using Multilayer Perceptrons, Support Vector Machines, Bayesian Classifiers and the k-Nearest Neighbors algorithm have been demonstrated in several applications. We present some of these results in this paper.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Recent advances on optimum-path forest for data classification: supervised, semi-supervised and unsupervised learning

Although one can find several pattern recognition techniques out there, there is still room for improvements and new approaches. In this book chapter, we revisited the Optimum-Path Forest (OPF) classifier, which has been evaluated over the last years in a number of applications that consider supervised, semi-supervised and unsupervised learning problems. We also presented a brief compilation of...

متن کامل

Supervised pattern classification based on optimum-path forest

We present an approach for supervised classification, which interprets a training set as a complete graph, identifies prototypes in all classes, and computes an optimum-path forest rooted at them. The class of a sample in a tree is assumed to be the same of its root. A test sample is classified by identifying which tree would contain it. We show how to improve performance from the errors on an ...

متن کامل

Land Use Classification Using Optimum-Path Forest

It was introduced in this paper the Optimum-Path Forest for land use classification aiming a better environmental management, using images obtained from CBERS 2B CCD satellite covering the area of the Rio das Pedras watershed, Itatinga City, São Paulo State, Brazil. We also compared the Optimum-Path Forest algorithm with the well known supervised classifiers: Artificial Neural Networks using Mu...

متن کامل

Optimum-Path Forest: A Novel and Powerful Framework for Supervised Graph-based Pattern Recognition Techniques

We present here a novel framework for graph-based pattern recognition techniques called Optimum-Path Forest (OPF), which has been demonstrated to be superior than traditional supervised pattern recognition techniques, such as Artificial Neural Networks using Multilayer Perceptrons and Support Vector Machines, in terms of both accuracy and execution times. The OPF-based classifiers model the pro...

متن کامل

Efficient supervised optimum-path forest classification for large datasets

Data acquisition technologies can provide large datasets with millions of samples for statistical analysis. This creates a tremendous challenge for pattern recognition techniques, which need to be more efficient without loosing their effectiveness. We have tried to circumvent the problem by reducing it into the fast computation of an optimum-path forest (OPF) in a graph derived from the trainin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2009